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Addressing BIG Problems with BIG Data
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Classifying and Processing Data

A bit about Systems



In 2011 US healthcare  spending was 
$2.7 Trillion --  17.9% of GDP.

IOM estimates $750B wasted due to 
unnecessary and inefficiently delivered 

services, excessive administrative costs, 
missed prevention opportunities, and fraud.

Src:  Center for Medicare & Medicaid Services, 
Institute of Medicine



In 2011 US healthcare  spending was 
$2.7 Trillion --  17.9% of GDP.

IOM estimates $750B wasted due to 
unnecessary and inefficiently delivered 

services, excessive administrative costs, 
missed prevention opportunities, and fraud.

Src:  Center for Medicare & Medicaid Services, Institute of Medicine; Trenkle, Tackling Future CMS Requirements; , Roger 
Foster, “How to Harness Big Data for Improving Public Health,” Government Health IT, April 3, 2012, at 

http://www.govhealthit.com/news/how-harness-big-data-improving-public-health

In 2012 CMS stored 400 Terabytes of 
Medicare/Medicaid claims data – and 
estimated this to double by YE2015.

US Healthcare data is estimated to exceed 
150 Exabytes (150 Million TB).
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IBM Data Baby
youtube.com

Big Data enabled doctors from University of Ontario to apply neonatal infant monitoring 
to predict infection in ICU 24 hours in advance 

Big Data Analytics in Smarter Hospitals



Sequencing Data
Gene sequencers introduced in 2012 will allow  the 
cost of human sequencing to fall below $1000.

A provider sequencing 30,000 patients / year will 
generate up to 15PB of sequencing data a year.  

Sequencing even a small fraction of the world’s 
population would generate many Exabytes of data

Image: Midwest Center for Structural Genomics 

Src: Life  Technology,  blueseq.com



Individual radiology departments collect 
about 50,000 images per day

In 2012, over 1 billion medical images were generated. 
Medical images growing at 20-40% per year.

Even at (only) 1MB/image that is a Petabyte. 



Source: Trafton Drew and Jeremy Wolfe, Harvard

Can you spot the cancer?



“Inattentional blindness“ led 83% of 
radiologists searching this image for 

cancerous nodules to miss the gorilla.

Source: Trafton Drew and Jeremy Wolfe, Harvard
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Daily Retina Scan  for Everyone
6B x 1MB x 365/y = ~2 Trillion MB = ~2 Exabytes/year

Image: 
Eyescreening.org.uk



Src:  TTI ’13 Urban 
Mobility Report

Congested urban roadways cost US $121 billion 
annually in the form of 5.5 billion lost hours and 

2.9 billion gallons of wasted gas…. 
with 56 Billion pounds of additional 

emitted carbon dioxide.
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Big Data Analytics for Traffic Flow Management
Big Data showcased ability for city of Kyoto to enhance real-time traffic flow 
management, detect unsafe situations and identify root cause of traffic jams 



1 BILLION lines of code
EACH engine generating 10 TB every 30 minutes!

       An increasingly sensor-enabled and instrumented 
       environment generates HUGE volumes of 

       data with MACHINE SPEED characteristics…



“In the United States alone, successful 
deployment of smart grid technologies could 

yield savings to society of $130 billion annually 
by the end of this decade.”

“350 billion annual meter readings can be used 
to better predict power consumption”

Src:  McKinsey



Central Texas is among the world’s most flash 
flood prone locations.  In 24 hours 8-9 Sept 
1921, over 38 inches of rain fell over 

Thrall, TX.  215 people died in that storm.
Despite >500 stream flow gages in 

“Flash Flood Alley,”  and access to millions of 
historical readings there have been more than 

200 flood-related fatalities since 1996

Src:  Lott, Monthly Weather Review 1955; 
Maidment 2010 TFFC Workshop



UT Austin / IBM Austin Watershed Simulation

Ultimately need to bring real-time measured 
data, historical data, and modeled data 

together.
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Vestas models weather to 
optimize placement of turbines, 
maximizing power generation 
and longetivity based on 2.5 
Petabytes of information.

 Public wind data is available on 
284km x 284 km grids (2.5o 
LAT/LONG)

 Perspective: The Vestas Wind 
library, as HD TV would take 70 
years to watch

 More data means more accurate and 
richer models (adding hundreds of 
variables)

 Granularity 27km x 27km 
grids: driving to 9x9, 3x3 to 
10m x 10m simulations

 Reduce time required to 
identify placement of turbine 
from weeks to hours.

18



Big Applications for BIG Data Analytics
Neonatal Care Trading Advantage

Law Enforcement Radio Astronomy

Environment

Telecom

Manufacturing Traffic Control Fraud Prevention
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Merging the Traditional and Big Data Approaches

IT

Structures the 
data to answer 
that question 

IT

Delivers a platform to 
enable creative 
discovery

Business 

Explores what 
questions could be 
asked

Business Users

Determine what 
question to ask

Monthly sales 
reports
Profitability analysis
Customer surveys

Brand sentiment
Product strategy
Maximum asset 
utilization

Big Data Approach
Iterative & Exploratory Analysis

Traditional Approach
Structured & Repeatable Analysis
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Extracting insight from an immense volume, variety and velocity of 
data, in context, beyond what was previously possible

“Big Data” has come to mean drawing value from data 
which has the following characteristics:

Scale from Petabytes (1000 Terabytes) to Exabytes (million 
Terabyte) to Zettabytes (billion Terabyte)

Complex data in many different formats from many sources

Streaming data requiring fast response

Trust improves as the number/variety of data grows

          Volume:

          Variety:

Velocity:

Veracity: 
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as much Data and Content
Over Current Decade

50x

2009: 0.8 ZettaBytes ( Billion Terabytes )

2020:
40 ZettaBytesData Volume

/
Source: The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East,; IDC Predictions 2013 

http://event.lvl3.on24.com/event/54/34/13/rt/1/documents/slidepdf/wc20130108.pdf

2013
4 billion terabytes

2.5 Exabytes ( million terabytes ) 
per day being created …
800-times the estimated size of the 
collection in the 
US Library of Congress 

(2 LoC estimate from 1997)

Big Data Volume: Digital Data is expected to double every 2 years

2013: 4 ZettaBytes

http://www.ibm.com/services/us/gbs/thoughtleadership/
http://event.lvl3.on24.com/event/54/34/13/rt/1/documents/slidepdf/wc20130108.pdf


According to the Sloan Digital Sky Survey, 
“the currently observable universe is home to of the 

order of 6 x 10^22 [60 billion trillion] stars“

By 2017 the total bits of digital data will surpass the 
number of stars in the observable universe!

Image: NASA
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Worldwide mobile telephone subscriptions 
reached 6.3 billion in 2012. 

5-times as much Data as Voice traffic
5.9 trillion text messages were sent in 2011.

Src:  Ericsson 2013 Interim Mobility Report; Informa 

Data increasing as access increases: 
In 2012 an estimated 2.4 billion people had Web access ... 

…including 530 million Web users in China. 
Two-thirds of the world’s population does not have access
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Multiple Sources: Intel, Ericsson, Gartner, etc.

Number of Connected Devices

2010

15 Billion

7 Billion

50 Billion

10

20

30

40

50

2015 2020

An increased variety of data sources are generating large quantities of data …

Connected devices are  driving much of the data growth: Security sensors, cameras, light 
bulbs, refrigerators, utility sensors, health sensors, tablets, netbooks, eBook readers, Internet 

TVs, digital picture frames, cars....

Connected device annual growth rate in Security, Health care, 
and Utility sectors exceed 45%.

CAGR for all connected devices is 35% 2010-15 

Big Data Variety



Big Data Velocity 

Data at Rest Data in Motion



Big Data Velocity: Analytics on Data in Motion

Telco Promotions
6B records/day
10 ms/decision
270TB for Deep Analytics

Smart Traffic
250K GPS probes/sec
630K segments/sec
2 ms/decision, 4K vehicles

SRC:  IBM 2012 GTO



13.345567% of statistics used in Big Data 

talks are complete fabrications 

How do you know I’m telling the truth?



Big Data Veracity

Data that is incomplete, 
inconsistent, missing, incorrect, 

ambiguous, too late, fake, 
corrupted…can be disastrous 

Business leaders frequently make 
decisions based on information 
they don’t trust, or don’t have

1 in 3

Business leaders say they don’t 
have access to the information they 

need to do their jobs

1 in 2

SRC: IBM Institute for Business Value  http://www.ibm.com/services/us/gbs/thoughtleadership/
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The Big Deal about Big Data:
Making Sense of Unstructured Text

“Currently a quarter of the information in 
the Digital Universe would be useful for 
big data if it were tagged and analyzed. 

We think only 3% of the potentially useful 
data is tagged, and even less is analyzed.”

-- IDC The Digital Universe in 2020: Big Data, Bigger Digital 
Shadows, and Biggest Growth in the Far East 
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Leveraging the Wisdom of the Crowd ... 

Training set for classification algorithms

e.g. Gattiker e.a., IBM Journal 57 3/4

Trusted sources of classification

Tagged documents



Unstructured text analytics to extract intent, drive sentiment analysis

Jo Jobs

Tina Mu

Tom Sit

Pauline

Monetizable Intent



Unstructured text analytics to extract intent, drive sentiment analysis

Jo Jobs

Tina Mu

Tom Sit

Pauline

Name, Birthday, Family

Not Relevant - Noise

Not Relevant - Noise

Monetizable Intent!

Monetizable Intent
Relocation

Location Wishful Thinking

SPAMbots



Volume

Velocity

Streaming Analytics

Variety Veracity

Volume Big Data
Analytics

Deep Analytics

Natural Language Access



37

The Big Deal about Big Data:
Watson –Natural Language access to Big Data



What is Watson? 
Automatic Open-Domain Question Answering System

  Given
– Rich Natural Language Questions
– Over a Broad Domain of Knowledge

 Deliver
– Precise Answers: Determine what is being asked and provide precise responses
– Accurate Confidences: Determine likelihood answer is correct
– Consumable Justifications: Explain why the answer is right
– Fast Response Time: Precision & Confidence in <3 seconds



Wilhelm Tempel

HMS Paramour

Isaac Newton

Halley’s Comet

Pink Panther

Christiaan Huygens

Peter Sellers

Edmond Halley

…

Candidate/Hypothesis Answer Generation

Term Overlap

Classification 

Relations

[0.58 0.5 -1.3 … 0.97]

[0.71 1   13.4 … 0.60]

[0.42 0    2.0 … 0.90]

[0.84 0.5 10.6 … 0.88]

[0.33 0    6.3 … 0.83]

[0.21 1   11.1 … 0.92]

[0.91 0   -8.2 … 0.31]

[0.91 0   -1.7 … -.20]

Diverse and Extensible Evidence
Scoring

Temporal

…

…

Watson answers by finding, reading, scoring and combining evidence
IN 1698, THIS COMET 

DISCOVERER TOOK A SHIP 
CALLED THE PARAMOUR 

PINK ON THE FIRST 
PURELY SCIENTIFIC SEA 

VOYAGE

Content
(Structured & Unstructured)

Primary 
Search

1) Edmond Halley (0.85)
2) Christiaan Huygens (0.2)
3) Peter Sellers (0.05)
4) …

Merging &
Ranking Based on 
Statistical Machine 

Learning

High-Speed
Evidence
Retrieval

Question 
Analysis

Important Terms: 1698, comet, 
  paramour, pink, …
AnswerTypes: comet discoverer
Date(1698),
Took(discoverer, ship)
Called(ship, Paramour Pink)
…

100’s of Natural 
Analysis Scoring

Algorithms

Watson



Big Data Veracity ….

There is power in knowing when you don’t know the answer! 

“There are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say, 
we know there are some things we do not know.

But there are also unknown unknowns – the ones we don’t know we don’t know.”
-- Donald Rumsfeld, US Secretary of Defense



Medical Image Category Recognition

 With billions of medical images, use the computer to categorize 
them.
– Recognizing up to millions of categories of images in medicine
– Massive data-driven modeling – extract large number of visual features and learn 

discriminative models from massive training data

 Massive data:
– Training examples (need 100’s per category) (= ~10M – 100M images)
– Sources = textbooks, journals, repositories, open data sets, Web

 Classification schemes:
– Construct large taxonomy (across modality, anatomy, view, pathology) (~1M)
– Inform from known medical ontologies, textbooks, references

 Visual classifiers:
– Train discriminative ensemble visual feature classifiers 
– Learn multi-modal classification where applicable 
– (e.g., visual features + text captions, annotations, related text, patient records,...)



Medical Imaging Classification

After training on 1026 images, 
computer attempts to classify 
1200 Test Images 

into 31 Categories

ImageCLEF 2012 



ImageCLEF2012 Medical Imaging Modality Classification Task

Examples of Correctly Labeled Images

3D Reconstruction Fluorescence microscopy 

 Angiography Magnetic Resonance 
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IBM Big Data in 1956 ….

1956 IBM 350 Disk Storage System
5 million characters 

Image Src: IBM



Deep Blue

● 1996 / 1997
● 240 Power 2 (p2sc)

– 30 nodes x 8 chips

● Chess Position 
Evaluation ASIC
– 480 ( 30 x 8 x 2 )



Watson

● 360 Power 7 chips
– 90 nodes x 4 proc.

● 16 TB memory
– total

● 4 TB disk
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Example Power 7 Big Data System

 Typical Big Data System

 Locally attached storage

 Medium strength network ( 10Gb Ethernet )

 16 Power 7 cores per node, 30HDDs

 180TB total

 < 7 minute Terasort

48

ARL Power Linux Big Data Cluster
48
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Accelerating Big Data



Local and Global Compute Phases

IBM Confidential
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High-Performance and Compact Architecture for 
Regular Expression Matching on FPGA
July 2012 (vol. 61 no. 7)
pp. 1013-1025
Yi-Hua Edward Yang, University of Southern California, Los Angeles
Viktor K. Prasanna, University of Southern California, Los Angeles
DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TC.2011.129

We present the design, implementation and evaluation of a high-performance architecture for regular 
expression matching (REM) on field-programmable gate array (FPGA). Each regular expression (regex) is first 
parsed into a concise token list representation, then compiled to a modular nondeterministic finite automaton 
(RE-NFA) using a modified version of the McNaughton-Yamada algorithm. The RE-NFA can be mapped directly 
onto a compact register-transistor level (RTL) circuit. A number of optimizations are applied to improve the 
circuit performance: 1) spatial stacking is used to construct an REM circuit processing m\ge 1 input characters 
per clock cycle; 2) single-character constrained repetitions are matched efficiently by parallel shift-register 
lookup tables; 3) complex character classes are matched by a BRAM-based classifier shared across regexes; 4) 
a multipipeline architecture is used to organize a large number of RE-NFAs into priority groups to limit the I/O 
size of the circuit. We implemented 2,630 unique PCRE regexes from Snort rules (February 2010) in the 
proposed REM architecture. Based on the place-and-route results from Xilinx ISE 11.1 targeting Virtex5 LX-220 
FPGAs, the proposed REM architecture achieved up to 11 Gbps concurrent throughput for various regex sets 
and up to 2.67x the throughput efficiency of other state-of-the-art designs.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yi-Hua%20Edward%20Yang
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Viktor%20K.%20Prasanna
http://doi.ieeecomputersociety.org/10.1109/TC.2011.129
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FPGA Accelerated Inflate Prototype Hardware Measurements

 Reference is standard gzip on 3.6GHz Power (linux)

 Benchmarks taken from the Canterbury corpus and the Large corpus (
http://corpus.canterbury.ac.nz/descriptions/) 
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File Original 

File Size

Compressed 

File Size

Compress

Ratio

zlib  Inflate 

Time (ms)

FPGA  Inflate 

Time (ms)

FPGA 

Throughput 

FPGA

Speedup

asyoulik.txt 125179 59320 2.11 0.59 0.040 3.16 GB/s 14.99X

alice29.txt 152089 65188 2.33 0.67 0.047 3.21 GB/s 14.06X

lcet10.txt 426754 172770 2.47 1.77 0.129 3.31 GB/s 13.75X

plrabn12.txt 481861 241161 2.0 2.33 0.147 3.28 GB/s 15.87X

ptt5 513216 67529 7.6 1.69 0.150 3.42 GB/s 11.27X

pi.txt 1000000 662248 1.51 4.67 0.334 2.99 GB/s 13.98X

world192.txt 2473400 840481 2.94 9.01 0.739 3.35 GB/s 12.20X

bible.txt 4047392 1421406 2.85 15.17 1.205 3.36 GB/s 12.58X

e.coli 4638690 1891365 2.45 16.76 1.391 3.33 GB/s 12.04X

IBM CONFIDENTIAL

D. Jamsek, A. Martin, K. 
Agarwal

http://corpus.canterbury.ac.nz/descriptions/
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Accelerated Shared Memory Power Linux Research Prototype

SYSTEMUSER
SPACE

53

Power Front Side bus
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Advantages of Shared Memory Accelerator

 Virtual Addressing
– Removes the requirement for pinning system memory for PCIe transfers

• Eliminates the copying of data into and out of the pinned DMA buffers
• Eliminates the operating system call overhead to pin memory for DMA

– Accelerator can work with same addresses that the processors use
• Pointers can be de-referenced same as the host application

-  Example: Enables the ability to traverse data structures

 Elimination of Device Driver
– Direct communication with Application
– No requirement to call an OS device driver or Hypervisor function for mainline 

processing

 Enables Accelerator Features not possible with PCIe
– Enables efficient Hybrid Applications

• Applications partially implemented in the accelerator and partially on the host 
CPU

– Visibility to full system memory
– Simpler programming model for Application Modules



QPACE Processor Node 
Card: Rialto 

QPACE PowerXCell8i node card and system.

IBM
PowerXCell8i

Xilinx
Virtex 5
FPGA

DDR2
DDR2

DDR2
DDR2

QPACE node card.



Linear Algebra Processor (UT Austin)

A. Pedram, e.a.
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IBM Wall Street Center of Excellent Demo
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...
write_addr_fpga (&B)
...

CPU

FPGA

Accelerator + Host CtrlC/Fortran Loops

Vision for seamless acceleration: C on KOVA prototype

 Target C/C++/Fortran loops for acceleration with minimal code changes

 Compiler generates VHDL implementing loop and ELF binary that replaces loop w. FPGA call

 Compiler generated shared-memory communication between CPU/FPGA (no user-visible API)

 Basic implementation running on Austin system: Matrix-matrix multiply, Levenshtein-distance

M[0][0] = 0;
for (i = 1; i <= Ni; i++)
  M[i][0] = -i;
for (j = 1; j <= Nj; j++)
  M[0][j] = -j;
for (i = 0; i < NMAX; i++)
  STR1[i] = rand_char();
  STR2[i] = rand_char();

for(i = 1; i <= Ni; i++) {
  for(j = 1; j <= Nj; j++) {
    short score = (STR1[i-1] == STR2[j-1]) ? 0 : 1;
    short a = min (M[i][j-1], M[i-1][j]) + 1;
    short b = min (a, M[i-1][j-1] + score);

    M[i][j] = b;
  }
}

for(i = 1; i <= Ni; i++)
  for(j = 1; j <= Nj; j++)
    printf ("%d\n", M[i][j]);

initialize

print result

accelerate on
FPGA

M[0][0] = 0;
for (i = 1; i <= Ni; i++)
  M[i][0] = -i;
for (j = 1; j <= Nj; j++)
  M[0][j] = -j;
for (i = 0; i < NMAX; i++)
  STR1[i] = rand_char();
  STR2[i] = rand_char();

call_hardware (&STR1, &STR2, &M);

for(i = 1; i <= Ni; i++)
  for(j = 1; j <= Nj; j++)
    printf ("%d\n", M[i][j]);

A. 
Jacob
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Example Self-Accelerating Adaptive Processor – 
“LegUp.org” High-Level Synthesis

LegUp accepts a standard C program 
as input and automatically compiles 
the program to a hybrid architecture 
containing an FPGA-based MIPS soft 
processor and custom hardware 
accelerators that communicate 
through a standard bus interface. In 
the hybrid processor/accelerator 
architecture, program segments that 
are unsuitable for hardware 
implementation can execute in 
software on the processor.

“Our long-term vision is to fully 
automate the flow in Fig. 1, thereby 
creating a self-accelerating adaptive 
processor in which profiling, hardware 
synthesis and acceleration happen 
transparently without user 
awareness.”

University of Toronto / Altera
http://www.eecg.toronto.edu/~janders/fpga60-legup.pdf
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There is no shortage of Big Problems that require Big Data
The Nature of Data in IT is changing.
Volume – Data doubling every two years

Variety – Heading to a trillion devices; Unstructured data; 
Image/Video linked to Mobile & Social growth 

Velocity – Sometimes all you have is milliseconds to respond
Veracity – My business, finances, safety, health, life depend on 
the quality of the data … and I’m not sure I can trust what I got
 Machines (in part) got us into this flood of Big Data. We need 

machines to help us out by:


1)Finding and exploiting the explicit and implicit structure in 
Unstructured Text  and Image Data 

2)Raising the level of interaction by presenting Natural Language 
interface to sophisticated analytics

Image © Jorge Royan
 / http://www.royan.com.ar / CC-BY-SA-3.0

http://www.royan.com.ar/
http://creativecommons.org/licenses/by-sa/3.0/


© 2012 IBM 
Corporation

IBM Power Systems

62

THINK
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